
CHAPTER 7

lNPUT/OUTPUT (I/O) AND INTERFACING

INTRODUCTION

The input/output section, under the control of the CPU’s control section, allows
the computer to communicate with and/or control other computers, peripheral
devices, other subsystems (display and communication), and systems (fire control,
sonar, FTAS, and the like). Take the time to understand your computer’s I/O
section: its organization, operation, and interfacing format. The latter is very
important because if the interfaces for the computer and the external equipment do
not match, your computer will not talk to anyone.

After completing this chapter you should be able to:

l

l

l

l

l

l

l

l

l

Understand the terminology associated with I/O

Describe how your computer’s input/output is organized—hardware
and software

List and describe how the different operating modes affect the transfer
of information

Describe the circuits and their functions in I/O operations

Describe the categories of I/O operations

Recognize how the external equipment in your computer’s system is
con netted

List and describe the types of interfaces used in I/O operations

Describe serial data I/O operations

Describe parallel data I/O operations

Let’s begin your study of input/output with how it is organized in your
computer. The different types of computers vary in their organization of I/O, but
the basic operations of the serial and parallel interfaces are similar regardless of
the computer types.

TOPIC 1—TERMINOLOGY l ANSI —American National Standards Institute.

You should be familiar with the following terms l Data Communications Equipment (DCE) —Any
before studying this chapter: device that communicates the data; for example, a

modem.
. ANEW —Army-Navy Electronic Warfare.

7-1

. Data Terminal Equipment (DTE) —Any device
that can transmit or send data; for example, a computer.

. EIA —Electronics Industry Association.

l External Function (EF) data —The purpose of
the EF function is to transfer command information by
using the appropriate control signals from the
transmitting computer to the receiving device. The
word size and bit format of the EF data will be specified
by the appropriate system design data or the individual
equipment specifications.

. External Interrupt (EI) data —The purpose of the
EI function is to transfer status information by using the
appropriate control signals from a transmitting device
to the receiving computer. The word size and bit format
of the EI data will be specified by the appropriate
system design data or the individual equipment
specifications.

l Gateway —A device that serves as a shared entry
point from a local area network into a larger information
resource such as a mainframe computer.

l Handshaking —Signals necessary for complet-
ing I/O operations.

l Hub —Repeats the signal on the cable.

. IEEE —Institute for Electrical and Electronics
Engineers.

o Input —Input refers to input to the computer.

l Input/Output (I/O) word —The I/O word is
defined as a digital word of a specified number of bits,
which has been agreed upon as the basic unit of
communication between interconnected units.

l Input Data (ID) —The purpose of the ID function
is to receive information using the appropriate control
signals from a transmitting device by the receiving
computer. The word size and bit format of the ID data
will be specified by the appropriate system design data
or the individual equipment specifications.

. IOA —Input/output adapter.

. IOC —Input/output controller.

l Output —Output refers to output from the
computer.

l Output Data (OD) —The purpose of the OD
function is to transfer information using the appropriate
control signals from a transmitting computer to the
receiving device. The word size and bit format of the

7-2

OD will be specified by the appropriate system design
data or the individual equipment specifications.

l Protocol —In a computer, protocol is the
procedure required to initiate and maintain operations.
For example, I/O operations of a parallel format use a
request and an acknowledge protocol to perform input
and/or output operations for the transfer of information
between the computer and external equipment.

l RS —Recommended Standard.

l Sink —The sink is defined as that end of a
channel that receives information frames.

c Source —The end of a channel that transmits
information frames.

TOPIC 2—INPUT/OUTPUT (I/O)
ORGANIZATION

All computers are capable of I/O operations. Some
computers rely on the CPU to handle all operations
including the I/O operations. These computers simply
use the circuits in the CPU to handle the I/O operations.
However, the majority of computers use an I/O
processor (fig. 7-1) that enhances the capabilities of the
computer and relieves the burden of I/O processing
from being on the CPU. This allows the computer to
perform other operations while still performing I/O
operations. In this topic we discuss I/O operations in
general terms, using an I/O processor. This includes the
physical aspects, data arrangement, format,
instructions, operations (modes of operation, timing,

Figure 7-1.—I/O processor in a computer system.

and control), categories of I/O operations, and I/O
interfacing.

INPUT/OUTPUT PROCESSOR

For those computers that have an I/O processor, the
physical organization of I/O is similar to the other major
functional areas: CPU and memory. I/O processors can
vary from many pcb’s that makeup a module/unit to a
single pcb. Larger mainframe computers use the
modular arrangement: multiple components on
multiple pcb’s that comprise one or more modules or
units. Mini- and microcomputers use chassis or
assemblies, cages or racks, and motherboard/backplane
arrangements. Minis and micros use multiple
components on one pcb or groups of pcb’s (usually not
more than seven) to form the I/O processor.

The I/O processor controls the transfer of
information between the computer’s main memory and
the external equipments. I/O processors are packaged
two different ways: (1) IOC/IOA modules or multiple
IOC/IOA pcb’s, and (2) I/O pcb’s. Regardless of the
setup, computers with an I/O processor will use some
sort of controller to regulate the signals in the I/O
processor itself (includes IOC/IOA setup) and memory.

IOC/IOA Module or Multiple
IOC/IOA Pcb’s

I/O processors that are packaged as IOC/IOA
modules or multiple IOC/IOA pcb’s are divided into
two sections. The two sections are a single module/unit
or group of pcb’s for the I/O controller (IOC) and a
single module/unit or group of pcb’s for the I/O
adapter (IOA) (fig. 7-2). Mainframes and some minis
use this arrangement.

IOC.— The IOC relieves the CPU of the necessity
to perform the time consuming functions of
establishing, directing, and monitoring transfers with
external equipments. Data and control signals are
exchanged with external equipments via the IOA. IOCs
communicate by means of a bidirectional bus. An IOC
is provided with a repertoire of instructions
(commands) that varies with the type of computer. The
IOC contains the necessary control and timing circuits
(digital) necessary to function asynchronously with the
CPU and controls the transfer of data between
accessible main memory and the external equipments.
IOC programs are initiated by instructions from the
CPU and executed by a repertoire of IOC commands
stored in main memory. Included in the repertoire are
those commands that establish the conditions for data

7-3

Figure 7-2.—IOC/IOA modules in a single cabinet
configuration.

transfers to and from the external equipments. See
figure 7-3 for an example.

IOA.— The IOA changes the input and output
control and data signal voltages to the voltage
requirements of the computer or external equipments.
The IOA receives data and control signals from the IOC
logic of the computer, and returns data and interfacing
signals to the IOC logic. It also transfers data and
control signals to the external equipments and receives
data and interfacing signals from the external
equipments. The IOA logic circuits consist primarily
of line drivers/receivers (linear circuits) and timing
circuits (digital circuits).

Communication between the IOC and IOA is by
means of a bidirectional bus. The IOA communicates

with the external equipments via I/O channels/ports.
The connectors for the input and output channels or
ports are physically located atop the IOA unit (fig. 7-4)
or on the rear of a computer cabinet (fig. 7-5). The type
of interfacing will dictate the type of connectors for the
channels or ports. The IOA is capable of receiving and
sending parallel and serial data.

IOC/IOA INTERFACING.— The IOA is a
completely passive unit and functions under the direct
control of the IOC. The driver circuits pass interfacing
and data signals to the external equipments. The
receivers pass data to the IOC. They are directed by the
IOC using input and output control circuits. The
request circuits pass interface signals to the IOC

Figure 7-3.—Example of a repertoire of IOC commands.

7-4

Figure 7-4.—IOA, top view with I/O connectors.

7-5

Figure 7-5.—I/O connectors, rear of computer cabinet.

7-6

Figure 7-6.—IOA/IOC interface.

(fig. 7-6). Some of the data and control signals the pcb to
external device(s) to that of the computer. Theexchanged between the IOC and IOA include: “

. Buffer enables

. Acknowledge enables

l Set/clear output register

l Data bits

l Request lines

l Input/output available

I/O Pcb(s)

In the I/O pcb arrangement, minis and micros
have multiple I/O pcb’s or a single I/O pcb. When
multiple I/O pcb’s are used, each I/O pcb will be
assigned a number of external equipments for I/O
operations. In this arrangement other circuitry will be
used that basically performs the same duties as a
controller. In the single I/O pcb arrangement, the
functions that an IOA would perform are contained on

match the electrical interface of the

connectors for the input and output channels/ports are
usually located on the rear of the I/O pcb (fig. 7-7).

Figure 7-7.—Connector parts on the rear of a microcomputer.

7-7

Some arrangements include assigning multiple ports to
each channel (fig. 7-8).

Micros usually have only one pcb for their I/O
operations: the pcb has both a parallel and a serial port
(fig. 7-7). Some minis and micros have dedicated pcb’s
separate from the I/O pcb(s) to handle the interface for
the peripherals and displays. For micros, the
interfacing for the keyboard is usually located on the
I/O pcb.

INPUT/OUTPUT DATA ARRANGEMENT

The function of any I/O operation is to exchange
information between equipments. Regardless of the
techniques used to move the information, there are
consistencies in the architectures of the I/O sections
used by computers. These consistencies include the
arrangement of the information exchanged and the
format of the information exchanged.

Arrangement

The types of information exchanged between the
computer and the external equipments frill into two
basic categories: data words and control words. The
length of the information exchanged varies with the
type of computer from 8-bit words to 32-bit words.

DATA WORDS.— Data words represent the
alphabetic and numeric information exchanged. Data
words are always thought of with the computer as the
reference point. Input data words are data entered in
the computer from equipments external to the computer.
Output data words are data sent out to the external
equipments from the computer. Some computers
transfer data words that include data and externally
specified addresses and index addresses.

CONTROL WORDS.— Control words specify an
action to be accomplished by an external equipment.
This might include an error or special condition of an

Figure 7-8.—Assigning multiple ports to a single channel.

7-8

external equipment or the status of an external
equipment, in response to a computer control word.
Some examples of control words used by computers
include the following:

. Function (command) control words —Function
control words are sent by the computer to an external
equipment to specify the type of operation it is to
perform. The signals used for the control words are
often referred to as handshaking. An example of a
control word would be a function code word telling a
printer to print the contents of a specific accumulator
register at the location specified by the address in the
instruction. Computers that have a control memory use
a control memory word to transfer data for I/O buffer
operations.

. External interrupt words —External interrupt
words are sent to the computer to specify that an error
or special condition exists in an external equipment or
the status of an external equipment. Review chapter 5
of this volume for a detailed discussion of interrupts:
their classification, types (micro, mini, and mainframe),
priorities (micro, mini, and mainframe), codes, and
handling process.

Format

There are two formats of information exchanged by
a computer: parallel and serial. The type of interface
will dictate the format of the information exchanged.

PARALLEL.— When the computer exchanges
information using a parallel configuration, all bits of
information represented by a byte or word are input or
output simultaneously. In figure 7-9, frame A, we
illustrate how the character M is output from the
computer to a printer in parallel format.

SERIAL.— When the computer exchanges
information using a serial configuration, all bits of
information are input or output one at a time. Figure
7-9, frame B, illustrates the character M being output
from the computer to a printer in serial format.

INPUT/OUTPUT INSTRUCTIONS

The heart of the I/O section is the input/output
processor: an IOC/IOA or I/O pcb arrangement. All
computers have I/O instructions. Computers without
an IOC/IOA arrangement have other means of

Figure 7-9.—Parallel and serial configurations: A. Character M transmitted in parallel; B. Character M transmitted serially,

7-9

optimizing the CPU’s time, so the CPU is not involved
in all transactions, including the I/O instructions. We
cover those methods later in this topic. However, for
computers that have an IOC, the IOC is a processor in
its own right. We focus our discussion of I/O
instructions on I/O processors with an IOC. An IOC is
capable of executing its own set of instructions
specifically designed to govern I/O operations for those
channels/ports handled by the particular IOC. Figure
7-10 shows the format of an example IOC instruction.
This format is used for some mainframes and some
minis. The designators shown are for a typical I/O
instruction and may vary with IOC instructions. Each
IOC executes instructions stored in main memory in the
same manner as the CPU executes instructions. There
are two basic types of IOC instructions: command
instructions and chaining instructions.

Command instructions are executed by the IOC
under the control of the CPU’s main program. Chaining
instructions are executed under the command of an
active channel (I/O operation in progress) chain. Some
IOC instructions peform the same functions whether it
is a command or a chaining instruction.

Command Instructions

Command instructions provide control over IOC
single or dual channel operations. They are executed
individually using the following process. The CPU
executes an I/O command start instruction, which is
a CPU instruction. The I/O command start instruction
specifies or addresses an IOC(s) and then halts further
CPU processing. The addressed IOC then references

specific main memory addresses (the command cell)
and executes the IOC command instruction previously
stored in the addresses. At completion of the instruction
execution, the IOC will clear assigned bits of the
command cells to indicate to the CPU that the command
has been processed and to release the CPU to continue
further processing. This is one instance in interrupt
driven I/O operations where the CPU will delay
processing while waiting for an I/O operation to take
place.

The instruction contained in the command cell will
cause the IOC to perform a variety of channel activity
functions. The most common operations deal with
initiating a new chain or terminating a chain in progress.
Other commands are used to master clear individual
channels, enable or disable a variety of interrupts,
monitor channel status, load or store control memory,
and initiate the IOC built-in test (BIT).

Chaining Instructions

Chains of IOC instructions are stored in memory by
the main CPU program before the I/O operation takes
place. The actual execution of chaining instructions is
independent of the CPU. Only a command instruction
execution from the command cell will delay CPU
processing. There can be an input chain and/or an
output chain being executed for each channel. Input or
output chains deal primarily with the transfer of blocks
of information.

A chain consists of IOC control words, command
words, output data words, and specified locations for

Figure 7-10.—IOC instruction format.

7-10

external status words and data words returned (input)
from the channel. The starting address of the chain (and
other data) is provided by the load control memory
command. The chain’s starting address is stored in the
channel’s chain address pointer portion of I/O control
memory. The contents of the I/O control memory are
used by the IOC to control all channel operations
including execution of chaining instructions.

TOPIC 3—INPUT/OUTPUT
OPERATIONS

Input/output operations are initiated by the CPU.
Computers with an IOC will begin I/O control functions
only after an initiate I/O or equivalent instruction is
executed by the CPU. I/O operations under the control
of the computer program control the external
equipment. Computer instructions inform the external
equipment which type of operations to perform with
function codes. Computer instructions also specify
memory areas for input and output information.
Input/output operations do not accept data from
external equipments or send information to them unless
memory areas for the data have been specified by the
computer programs. Whenever an external equipment
is ready to send or receive data, a request signal is sent
to the computer. How the I/O section notifies or
interrupts the control section that an external equipment
is ready to send or receive information/data depends on
the type of computer. Some constants in all I/O
operations include the following:

When the transfer will begin,

How many words or bytes will be transferred,

Word or byte size,

When each individual word or byte is actually
transferred, and,

When the transfer will terminate.

I/O operations require circuitry that must take

usually a maintenance panel or some equivalent. You
can use this option for troubleshooting purposes.
Consult the operator’s section of your computer’s
technical manual. As far as the operating modes for I/O
operations, these options are usually established at the
factory. Again, they usually apply to computers that
have an IOC. Some of the operating modes for I/O
operations include the following:

l Single-channel —The single-channel operating
mode allows external equipments to communicate with
the computer via one input/output channel.

l Dual-channel —The dual-channel operating
mode is used by computers with smaller word sizes, say
16 bits, to communicate with external devices using a
larger word size (30 or 32 bits). In a dual/channel mode,
the data lines for two channels are combined under
control of the lower order channel. A pair of
sequentially numbered channels (0 and 1,2 and 3, and
so forth) is used for dual-channel operations. The even
numbered channel provides the control signals and
lower half or lower order data bits. The odd numbered
channel provides the upper half or upper order data bits
only. The exchange of information over the dual
channel is controlled by the even numbered channel’s
interface signals. Dual channels may use the computer
peripheral or intercomputer channel signals.

@ Externally specified address (ESA) —The
externally specified address mode provides the external
devices with a means of specifying an absolute memory
location for storage (write) or retrieval (read) of
information on a word-by-word basis.

l Externally specified index (ESI) —The
externally specified index mode is identical to regular
transfers (input, output, external interrupt, and external
function) except that the IOC requires the external
device to specify an index address in main memory.

l Intercomputer channel (IC) —The intercomputer

action in a specific sequence of events to communicate
with the external equipment. In I/O operations, we
examine operating modes, I/O circuits, and I/O
functions.

OPERATING MODES
I/O CIRCUITS

Similar to the CPU, some computers have the
capability to select operating modes. These options are
usually found with computers that have an IOC. They
can be found on the computer’s controlling device,

channel mode permits communication between two
CPUs. In this mode, each computer appears as an
external device to the other. During operations, the
computer that is outputting the data is defined as the
sending computer. The computer that is receiving the
data from the sending computer is defined as the
receiving computer.

In chapter 4, we discussed the circuits used by
computers. We also discussed some of the same circuit
types in the CPU and memory sections. I/O is no

7-11

different; but in addition, I/O operations include not
only digital ICs, but also linear ICs. The linear IC
circuits are the first and last type of circuitry the
information interfaces with when entering and leaving
the computer. In this topic, we discuss some of the more
common circuits you will encounter when dealing with
I/O functions. In addition to the circuits we have
discussed in the CPU and memory sections, you must
be familiar with driver and receiver circuits (linear
ICs). Review chapter 4 of this volume and NEETS,
Module 13, Introduction to Number Systems and Logic
Circuits. They provide excellent reviews of the circuits
and their functions covered in the remainder of this
topic.

l

l

l

l

l

l

l

l

The circuits include:

Adders

Command signals (enables)

Decoders

Line drivers and receivers

Registers (includes RTC and Monitor Clock for
IOCs)

Selectors

Timing

Translators

One of the primary uses of registers in I/O
operations is to provide the interfacing between the
CPU, I/O, and memory. They enable and route control
and data information between the CPU, I/O, and
memory using the internal bus system. In a computer
with no I/O processor, a register will be designated as
either an input or output register (fig. 7-11). Decoder
circuits are used for address translation, control circuits
for governing the operation of the interface, data
registers, and status registers for information exchange.
The data registers are used to hold or buffer data during
interchanges between the very fast CPU and the slower
external equipments. The status registers hold
information for the CPU that indicates the operating
condition and current activities of the external
equipments. We discuss external interfacing later in
this topic.

INPUT/OUTPUT FUNCTIONS

The input and output functions performed by an I/O
processor are defined and enabled through the
interpretation and execution of input/output and/or
input/output controller (I/O(C)) commands obtained
from main memory. The I/O circuits provide the

Figure 7-11.—Computer operations with no I/O processor
using registers.

timing, control, temporary storage, routing, command
translation, and interfacing (internal and external) to
perform I/O operations.

Timing Circuits

As we discussed in the memory section, timing
circuits also will provide the enables to manage the I/O
control circuits used for I/O operations. Some
computers use the computer’s master clock and one or
two other timing signals derived from the master clock
to control the flow of data in I/O operations; an example
of this is the timing used in microcomputers. Still other
more complex computers, such as mainframes and
minicomputers, rely on a master clock and main timing
circuits in the respective functional area (CPU, memory,
or I/O) to produce and distribute timing signals to the
I/O control circuits.

In computers with an IOC, their I/O master clock
and timing circuits operate completely independently
of the CPU timing. Their master clock is started when
the computer is initially powered on or auto restarted.
It can only be stopped or temporarily halted under

7-12

certain conditions, such as a computer master clear or a
read/write memory reference.

Control Circuits

The I/O control circuits are under the direct or
indirect control of the program. The I/O control circuits
decode I/O commands from the CPU and generate the
required signals to execute the instructions. The timing
circuits coordinate control circuit operations.
Computers with an IOC operate independently from the
CPU after they receive an initiate I/O instruction and
control all I/O operations. Depending on the computer
type, some of the more common uses of the control
circuits include the following:

Logic to decode I/O commands

Logic to generate signals to execute I/O
instructions

Logic to evaluate priorities of I/O requests

Logic to execute buffered and unbuffered
requests

A term used quite often with I/O control operations
is the term buffer. A buffer is nothing more than a
sequential set of memory locations that contains data to
be sent out or an area that is set aside for data to be
received. A buffer is considered to be terminated when
all the words or bytes in the assigned memory locations
have been sent or received. Unbuffered operations are
where data is exchanged within the computer between
the CPU and various parts of the computer. Unbuffered
operations do not establish limits when transferring
information. Buffered operations, on the other hand,
are for the expressed purpose of transferring
information to and from the computer and an external
device; they have established buffered limits. For
example, addresses 008 through 178 in memory maybe
set aside to receive data into the computer. A buffer can
also be called a frame.

Sequencing

The I/O processor executes I/O commands using
sequencing circuits in a manner similar to the CPU.
Like the CPU, the I/O processor’s sequencing circuits
control the order in which events will be executed based
upon the translated function code and modifying
designators. To complete a particular I/O command,
CPU instruction, or maintenance console/equivalent
action (if available) may require the I/O processor to run
one or more of the available sequences. A processor

may have up to six sequences depending on the design
of the computer.

I/O Interface Circuits

The CPU interfaces with the I/O processor through
the CPU’s I/O instructions. These instructions cause
the initiation of I/O operations. For computers with an
IOC, the instructions allow the CPU to access the RTC
or the monitor clock. This communication is done via
the bus system. The communications lines include
some of the following:

Request lines (initiate I/O instruction)

I/O(C) select lines

Data lines

Data ready

Interrupt requests

I/O Memory Reference

The I/O processor references main memory during
specific sequences such as an instruction or a
maintenance console/equivalent action (if available).
The bus allows this to be performed asynchronously.
The I/O processor acquires I/O commands, output data,
and operands from main memory and presents the
information for storage into a main memory location
over a bus. Some of the lines of communication include
the following:

l I/O memory selection

c I/O read reference

. I/O write reference

I/O Control Memory

I/O processors can also use an I/O control memory,
which is used primarily by mainframe and
minicomputers containing an IOC. I/O control memory
words are set aside in main memory to control data
transfers for I/O buffer functions. I/O control memory
is capable of handling parallel or serial information.

PARALLEL OPERATIONS.— In parallel
operations, each I/O channel has its own block of
memory addresses (usually 16). They include blocks
for input, output, external function, and external
interrupt operations. Some of the items included in
parallel operations are as follows:

7-13

. Buffer control words (BCWs) —Buffer control
words control the type and number of words or bytes
that are to be transferred by the pending operation.
Transfers include 8-bit bytes, 16-bit single words, and
32-bit words.

l Buffer address pointers (BAPs) —Buffer address
pointers specify the next memory address, within the
buffer, for a transfer to take place.

l Chain address pointers (CAPs) —There is one
chain address pointer for each input and output chain of
a channel. Each CAP specifies where in memory the
IOC can find the next chaining instruction.

SERIAL OPERATIONS.— Serial operations are
affected by character size (5 to 8 bits), parity selection
(odd, even, or none), baud rate (50 to 9600 baud), and
synchronous (sync) or asynchronous (async)
interfacing. Some of the items included in serial
operations are as follows:

. Monitor words —Monitor words are used to
store characters for comparison with received (input)
data characters.

l Suppress word —A suppress word contains a
code that is used to remove specific characters from the
serial transmission stream.

CONTROL MEMORY OPERATIONS.— The
contents of control memory are accessed and modified
through the use of IOC command or chaining
instructions. The exception is actual data transfers in
which the IOC logic updates control memory for each
word or byte transferred. The basic operations that deal
with control memory are the following:

l Initiate transfer (command or chain) —Initiate
transfer loads the input or output BCW and BAP in
control memory for the channel specified and initiates
the input or output transfers.

l Load/write control memory (chain) —
Load/write control memory is used to load or write data
into single control memory word locations.

l Store control memory (command or chain) —
Store control memory is used to write the contents of a
specified control memory address into a memory
address for CPU processing.

l Set/clear flag (chain) —A set/clear flag is used to
set or clear (zero) specified bits or bit groups in control
memory or main memory locations or the channel status
word. It is also used to set or clear the test bit in the
channel status word for conditional jumps.

. Search for sync/set suppress/set monitor
(chain) —The search for sync/set suppress/set monitor
enables or disables sync, monitor, and suppress
capabilities indifferent serial configurations.

* Set/clear discrete (command and chain) —
Set/clear discrete is similar to set/clear flags except that
the set/clear discrete deals with serial interfaces
exclusively. It is used to turn on or turn off specific
serial charnel signals such as data terminal ready.

. Channel control (command or chain) —Channel
control performs a variety of single and multichannel
functions. It can be used to master clear a single or all
IOC channels, input or output. It is also used to enable
or disable all, low priority, or a single
interrupts (external or class III interrupts).

CATEGORIES OF I/O OPERATIONS

channel’s

There are two ways that the I/O section will handle
the transfer of data between the computer and the
external units: direct CPU/external device (direct CPU
interface) communication and direct memory access
(DMA). Each method has it advantages and
disadvantages. We begin with direct CPU/external
device communication.

Direct CPU Interface

With direct communication, also called
accumulator based I/O, the peripheral devices are tied
directly into the CPU communication bus (control bus,
data bus, and so forth). In a simple I/O scheme, the CPU
handles all I/O transactions by executing one or more
instructions for each word of information transferred.
Three techniques are used: memory mapped I/O, polled
I/O, and interrupt driven I/O.

MEMORY MAPPED I/O.— In memory mapped
I/O, the CPU accesses the I/O device by placing
appropriate addressing information on the bus. The
addressing information uniquely identifies the device
and possibly several addressable locations within the
device. Thus an addressable location in an I/O device
might be treated as a memory location in the computer.
This enables the CPU to transfer data to and from the
I/O device in the same way as main memory transfers.
The following is an example:

7-14

Each I/O channel is assigned four memory
addresses in main memory or in logic circuitry
(registers) that replaces or overlays four
sequential main memory addresses. These four
addresses or registers are used to store the
following data:

address n — External Interrupt Code Word

address n + 1 — Input Data Word

address n + 2 — Output Data Word

address n + 3 — Channel Control/Status Word

These addresses also allow the IOC/CPU
to perform interrupt driven or polled I/O
operations. Addresses n + 1 and n + 2 can be
used as single word buffers for polled
operations with the channel status word (n+ 3)
acting as the status word for the CPU to
periodically sample (poll).

POLLED I/O.— In polled I/O, the CPU must
regularly check— or poll — each channel or port in turn
to determine if it has information for input or is ready
to accept data for output. A flag register can be used to
check the port’s status. Polling is time consuming. The
CPU must pause between executing processing
instructions and poll of each port. A port’s status is
examined in case action is required by the computer.
We use a keyboard as an example of polled I/O. Figure
7-12 shows a read operation. The CPU reads or
receives 8-bit encoded characters as they are typed on
the keyboard. The CPU is programmed to read the
input characters from an external device, in this case a
keyboard. The keyboard inputs parallel 8-bit character
codes for each depression of the keys. Characters are
entered slowly as compared to the CPU’s ability to

Figure 7-12.—Polled I/O; read operation,

process them. The dedicated CPU has to wait until the
next character is entered each time.

The CPU is programmed with what is known as an
I/O wait loop. As the CPU executes the loop
instructions, it periodically (say 20 times a second)
checks the status code from the keyboard to see if a
character has been entered. A data register, INBUF, in
the keyboard interface receives the character data from
the keyboard. It holds the data until read by the CPU.
A status register, INSTATCODE, indicates whether
there is a new character in the INBUF register. By
continuously testing the status register, the CPU detects
when the code for a data entry is present. The CPU then
executes the instructions to transfer the data from the
data register to the specified location in the computer.
Once this has completed, the CPU returns to the wait
loop and polling process. The same procedure can be
used for output or write operations. Figure 7-13 shows
an output operation. In this case, the data is moved from
a computer location to the data output buffer of the
output device.

One of the disadvantages with polled I/O is that it
involves the CPU throughout the input/output process.
This is wasteful of CPU time. The CPU spends time
executing input/output instructions that it could be
spending performing other operations. Direct CPU
interface has its place, particularly in small computers
that are not concerned with high-speed operations and
processing very large amounts of data. Most of the
larger computers, however, use interrupt driven I/O.

INTERRUPT DRIVEN I/O.— The interrupt
technique requires more complex hardware and
software, but makes far more efficient use of the
computer’s time and capacities. In an interrupt driven
I/O, the I/O section itself is capable of accessing
memory via the computer communication buses. The
I/O processor can, while conducting I/O operations,

Figure 7-13.—Polled I/O; write operation.

7-15

read data from memory (output) or write data into
memory (input). The CPU still provides overall
control of the I/O operations, but it is not directly
involved in the actual data transfers between memory
and the external equipments. When the I/O section is
capable of memory access, the CPU provides I/O
commands to an I/O controller (IOC) or processor
and then goes about processing other necessary
operations. The IOC in turn controls all I/O operations
and interrupts the CPU operation when necessary to
inform it of event completion or problems with an I/O
interface channel or external device.

With this method, the CPU concentrates on its
essential business of processing information. We use
the keyboard again as our example. The keyboard is
ready to input characters. The keyboard interface
signals the CPU when a valid character is available in
its INBUF buffer. The CPU is performing some
computational task, when the keyboard sends an
interrupt request that generates an interrupt in the CPU.
When the interrupt request arrives, the CPU leaves its
current task, but not before making arrangements to
save all the data from computations just previous to the
interruption. The CPU leaves its current task and
executes the appropriate service routine. In this case it
receives the input from the keyboard interface and
promptly sends it to the desired location in the
computer. When the information has been routed to its
desired location and the input operation has been
completed, the CPU returns to its previous task.
Review chapter 5 of this volume for a detailed
discussion of the intettupt process.

An interrupt request can occur at any time. To
avoid confusion, most computers use a priority system
for requests in the event that two or more interrupts
arrive simultaneously. Interrupt driven I/Os use a
priority system to honor requests and interrupts. The
priority system is divided into channel and function
priorities. The channel priority performs priority
determination of requests and interrupts based on the
channel number. Figure 7-14 reflects channel priority
of a computer with 16 channels. Notice how they are
grouped and prioritized. Function priority determines
the order of honoring requests and interrupts when
channel priority honors more than one request per
channel. See figure 7-15.

7-16

Figure 7-14.—Channe1 priority determination.

Depending on the type of computer, interrupts are
categorized and the program can be written to meet
specific requirements when an interrupt occurs. Some
interrupt requests cannot be ignored. For example,
when a power failure interrupt occurs, the computer is
given the needed time to save information before the
computer system shuts down.

Direct Memory Access (DMA)

When the CPU is directly involved in each of the
I/O data transfers, it slows down the process of moving
information in and out of the computer. The use of

Figure 7-15.—Function priority determination.

direct memory access (DMA) gives the computer an
advantage-speed. It allows information to be moved
quickly in and out of memory without the intervention
of the CPU. DMA is given control and takes over from
the CPU as director of electronic traffic on the
computer’s network of communication buses. It allows
blocks of information to be transferred directly in and
out of memory and from and to an external device
without any CPU intervention. Information is
transferred at a speed compatible with the speed of the
external device. Therefore, the use of DMA would be
advantageous when using a high-speed external device,
such as a magnetic disk. The DMA acts the same as an
I/O processor; it is just another method to control the
flow of information.

A DMA controller is usually placed between the
external device and the computer’s bus. The controller
uses circuits consistent with the computer’s other major
functional areas. The controller consists of several
functional parts. Two counter registers are used. One
generates the next main memory addresses from which
information is read or in which it is stored. This counter
register is incremented by successive information
transfers. The second counter keeps track of the
number of information words that are remaining to be
transferred. A data register serves as a buffer between
main memory and the external device. And of course,
the control circuits, will control DMA operations.
Other registers are provided for more complex external
devices.

In its most usual form, a DMA assumes command
of the computer’s bus when the DMA controller
receives an interrupt signal from an external device. It
then gives the CPU a hold/suspend operations message.
The CPU will respond with a hold-acknowledge signal.
It turns over control of the bus and then, in effect, takes
a short break. Meanwhile, the DMA controller moves
information between main memory and the I/O external
devices and independently carries out the I/O transfers.
The DMA controller will inform the CPU when it is
finished with an interrupt. During DMA operations, the
CPU performs other tasks. If the CPU and the DMA
controller try to access main memory simultaneously,
the DMA has priority.

TOPIC 4—INPUT/OUTPUT
INTERFACING

Input/output (I/O) interfacing is affected by many
factors. Among them are the method of connection,
serial or parallel interfacing, and the type of equipment
the computer is interfacing with. Input/output
operations allow the computer to communicate with an
assortment of external devices. Most computers use an
I/O processor of some sort, so we concentrate our
discussion in that area. The external devices are
connected to the I/O processor via I/O channels or
ports. An I/O channel or port is nothing more than the
wiring necessary to interconnect the computer’s I/O
processor with one or more external devices. The type
of interfacing used will dictate the wiring of each
channel or port. Computers may have a small number
of channels or ports with multiple equipments
connected to each channel, or they may, particularly in
larger computers, have a number of I/O channels with
limited numbers or types of external equipments on
each channel or port.

METHODS OF CONNECTIONS

There is a great deal of variety not only in the types
of external devices but also in the methods of
connecting them to a computer. One thing that
computer external devices have in common is that they
communicate wit-h the computer indiscrete binary data.
The function of the external equipment may be to
convert that data to other forms, but when a data
exchange is done over I/O channels, the data exchange
is in some form of binary data. We now look at two
methods of connecting the external equipments where
more than one external device is involved: daisy
chaining and independent request control.

Daisy Chaining

When more than one peripheral device is connected
to a single port/channel, a technique called daisy
chaining is used. When daisy chained, the peripheral
devices receive or transmit information over a common
path. A separate set of addressing or control lines is
used to identify (address) specific devices and to
control the transmission or reception of information.
When the CPU dictates the use of the computer’s bus,
there is no difficulty in deciding which external device
will have access to the computer’s bus.

But in more complex situations, such as DMA
transfers, simultaneous requests for the computer’s bus
may be made by two or more external devices. Then a

7-17

preset method decides the order in which the devices
can use the computer’s bus. Refer to figure 7-16 as you
read. An I/O controller of some type will correspond
with the external devices. When an external device
requests control of the bus, it signals the controller by
activating the common bus request line. The devices
on the line have ORed connections. The controller
acknowledges the use of the bus on a separate line. The
I/O controller will scan the chain with an acknowledge
signal until it reaches the external device that requested
the bus. The external device stop further propagates
the acknowledge signal and accesses the bus. When
two or more devices request control of the bus, the
external devices closest to the I/O controller will be
granted access to the bus first. Thus the order of
connection on the daisy establishes the priority of which
external devices are given access to the computer’s bus.

Independent Request Control

Independent request control (fig. 7-17) offers a
faster and more flexible way to the control bus requests.
In this method, separate lines are used for the request
and acknowledge lines. The I/O controller assigns
priority to each external device, which can be fixed or
programmable. A combination of the two methods
produces greater flexibility when dealing with
simultaneous requests, particularly when dealing with
interrupt driven I/O. When signaled on a common
interrupt request line, the CPU can poll all external
devices in a predetermined order to find which
external device needs to be serviced. This method is
entirely software. Generally speaking, computers that
use a request and acknowledge system, prioritize the
functions and the channels. Some of the functions, in
descending order, include the following:

. External Interrupt

l External Function

l Output Data

. Input Data

The channels/ports are also prioritized.
Equipments are assigned a channel/port and usually the
channel with the highest number will be serviced first
by the computer. Figures 7-14 and 7-15 apply.

I/O INTERFACING STANDARDS

There are two major types of computer/external
equipment communication formats: serial and
parallel. The communication formats are governed by
the standard that is identified by the interface. The
interfacing standards provide valuable information. As
a general rule the standards can be divided into four
categories: mechanical, electrical, functional, and
procedural. The standards can provide other standards
that must be adhered to but do not fall into any one of
these four categories.

l Mechanical —The mechanical portion takes into
account such things as the type of connectors to be used,
the number of pin connections in the connectors, and
the maximum cable lengths allowed.

. Electrical —The electrical characteristics
include the allowable line voltages and the
representations for the various voltage levels.

. Functional —The functional interface specifies
such things as which signals-timing, control, data, or
ground leads—are to be carried by each pin in the
connector.

Figure 7-16.—Connecting external devices in a daisy chain.

7-18

Figure 7-17.—Independent request control.

. Procedural —The procedural characteristics
define how signals are to be exchanged and the
environment necessaryto input and output data.

No matter the format, I/O interfacing components
are generally used by most computers regardless of the
computer type.

I/O INTERFACING COMPONENTS

The computer’s I/O processor, regardless of the
type of computer and regardless of the type of format
(serial or parallel) must ensure that the voltage levels
between the computer and the external equipments are
compatible. The primary circuitry that accomplishes
this is located on an I/O pcb or modules/pcb’s that make
up an IOA. Some of the primary I/O interfacing
hardware includes universal receiver transmitters, line
drivers, and line receivers.

Universal Receiver-Transmitters

Within a digital computer, the data is transferred
internally using a parallel format. All the bits of a byte

or memory word are exchanged simultaneously
between registers, buses, and other computer logic.
For the data to be communicated over a serial
channel, it must be converted from parallel to a serial
bit stream. Universal receiver-transmitters come in
three types: universal asynchronous receiver-
transmitters (UARTs), universal synchronous receiver-
transmitters (USRTs), and universal synchronous/
asynchronous receiver-transmitters (USARTs). A
UART, USRT, or USART may be built into the
computer or added as part of an I/O pcb or serial
interface board. Modern UARTs, USRTs, or USARTs
may consist of a single IC chip.

We take a look at a USART as an example of this
type of logic assembly. The USART is designed to
function as a peripheral device to the microprocessor.
The microprocessor transmits byte-oriented data (data
and command/control words) to the USART and
receives byte-oriented data (data and status words) from
the USART. The actual conversion from serial to
parallel or parallel to serial is performed by the USART
and is transparent to the microprocessor. The standard

7-19

USART chip (fig. 7-18) is composed of logic circuits,
which are connected by an internal data bus. The logic
circuits are read/write control logic, modem control,
data bus buffer, transmit buffer, transmit control,
receive buffer, and receive control.

The CPU communicates with the USART over an
8-bit bidirectional tristate data bus. The USART is
programmable, meaning the CPU can control its mode
of operation using data bus control and command
words. The read/write control logic then controls the
operation of the USART as it performs specific
asynchronous interfacing.

READ/WRITE CONTROL.— The read/write
control logic accepts control signals from the control
bus and command or control words from the data bus.
The USART is set to an idle state by the RESET signal
or control word. When the USART is IDLE, a new set
of control words is required to program it for the
applicable interface. The read/write control logic
receives a clock signal (CLK) that is used to generate
internal device timing.

Four control signals are used to govern the
read/write operations of the data bus buffer. They are
as follows:

The CHIP SELECT (CS) signal, when true,
enables the USART for reading/writing
operations.

The WRITE DATA (WD) signal, when true,
indicates the microprocessor is placing data or
control words on the data bus to the USART.

The READ DATA (RD) signal, when true,
indicates the microprocessor is ready to receive
data or status words from the USART.

The CONTROL/DATA (C/D) signal identifies
the write operation transfer as data or control
words, or the read operation transfer as data or
status words.

MODEM CONTROL.— The modem control
logic generates or receives four control or status signals
used to simplify modem interfaces. They are as
follows:

Figure 7-18.—Universal synchronous/asynchronous receiver transmitter (USART).

7-20

. Data Set Ready (DSR) —A data set ready is sent
from the computer to the external device to notify the
external device that the computer is ready to transmit
data when HIGH.

. Data Terminal Ready (DTR) —A data terminal
ready is sent from the external device to the computer
to indicate that the external device is ready to receive
data when HIGH.

l Request to Send (RTS) —A request to send is
sent from the external device to the computer to indicate
that the external device is ready (HIGH) or busy
(Low).

l Clear to Send (CTS) —A clear to send is sent
from the computer to the external device as a reply to
the RTS signal.

TRANSMIT BUFFER/TRANSMIT CON-
TROL.— The transmit control logic converts the data
bytes stored in the transmit buffer into an asynchronous
bit stream. The transmit control logic inserts the
applicable start/stop and parity bits into the stream to
provide the programmed protocol. A start bit is used to
alert the output device, a printer for instance, to get
ready for the actual character (bit). The signal is sent
just prior to the beginning of the actual character
coming down the line. A stop bit is sent to indicate the
end of transmission. The parity bit is used as a means
to detect errors; odd or even parity maybe used.

RECEIVE BUFFER/RECEIVE CONTROL.—
The receive control logic accepts the input bit stream
and strips the protocol signals from the data bits. The
data bits are converted into parallel bytes and stored in
the receive buffer until transmitted to the
microprocessor.

Line Drivers/Receivers

We discussed line drivers/receivers in chapter 4.
Their basic function is to drive and receive (detect) the
digital signal sent or received over a cable to other
external equipments (including computers). The line
drivers/receivers are designed to send and receive
signals over short and long distances using serial or
parallel format. Large voltages or currents are
generated from small voltage or current using TTL or
MOS circuitry. The two types most commonly used
include single-ended and differential. The voltage
levels and current amounts sent and received are
dictated by the interface. The voltage and current
characteristics required are also dictated by the
interface. We discuss the voltage levels and some of

the characteristics when we cover I/O channel/port
configurations that include the various interfaces.

I/O INTERFACE FORMATS

There is a variety of serial and parallel I/O channel
formats that you may encounter as a technician. Do not
take for granted the type of interface a computer uses.
A single different pin in a connector or a different
voltage level used by a computer can make a vast
difference when you are performing maintenance.
Your computer’s technical manual will provide the
standards to be used with the cabinet and cable con-
nectors. They will match the standards that govern the
requirements for parallel and serial interfacing. Table
7-1, from MIL-STD-2036, General Requirements For
Electronic Equipment Specifications, provides you with
some of the accepted standard external interfaces. We
do not cover the General-Purpose Interface Bus (GPIB),
Fiber Distributed Data Interface (FDDI), and
TACTICAL. Other interfaces used but not listed in the
table include RS-449, Centronics Parallel, ST-506/412,
Enhanced Small Device Interface (ESDI), Integrated
Drive Electronic (IDE), and Enhanced Integrated Drive
Electronics (EIDE). We discuss signal designations in
more detail later in this topic under serial and parallel
I/O operations. First, let’s look at the various interfaces
and some of their applications and any unique
characteristics. As stated, each interface is governed by
a standard.

Table 7-1.—Standard External Interfaces from
MIL-STD-2036

7-21

NTDS Input/Output (MIL-STD-1397)

The NTDS input/output interface is probably one
of the most versatile of formats because it is designed
to handle either parallel or serial formatted information,
depending on the type of computer and its I/O
requirements. This interface specifies three I/O control
and data signal categories. We cover the first two under
parallel and serial operations later in this topic. The
categories include:

l Category I —Computer to external device

l Category II —Computer to computer,
intercomputer (IC)

l Category III —External device to external device

Within this standard, there are nine types of formats
(A through H and J). They include both serial and
parallel formats as described in the following
paragraphs.

TYPE A (NTDS) SLOW.— Type A transfers
parallel data of up to 41,667 words per second on one
cable. This type interface uses 0 vdc (logical 1) and -15
vdc (logical 0) to transmit bit groupings of 16, 30, or 32
bits, depending on the type of computer. The relatively
large voltage change between logic states, with its
inherent time delays, limits the speed of data
transmission. Type A can transmit digital signals up to
1000 feet. It is most frequently used in large mainframe
and some minicomputers to interface with equipment
found in the data processing, display, and
communication subsystems. Type A uses a request and
acknowledge protocol process. It transfers control and
data words using two cables: one input and one output
for the same channel. You may, however, encounter a
few devices that use input only or output only portions
of an NTDS slow channel. Type A signal designations
for input and output include the following:

l

l

l

l

l

l

l

l

EIE —External interrupt enable

IDR —Input data request

EIR —External interrupt request

IDA —Input data acknowledge

EFR —External function request

EFA —External function acknowledge

ODR —Output data request

ODA —Output data acknowledge

TYPE B (NTDS) FAST.— Type B transfers
parallel data of up to 250,000 words per second on one
cable. This type interface uses 0 vdc (logical 1) and -3
vdc (logical 0) to transmit bit groupings of 16, 30, or 32
bits depending on the type of computer. Type B can
transmit digital signals up to 300 feet depending on the
type of cable used. It is most frequently used in large
mainframe or some minicomputers to interface with
equipment found in the data processing, display, and
communication subsystems. Type B uses a request and
acknowledge protocol process. It transfers control and
data words using two cables: one input and one output
for the same channel. You may, however, encounter a
few devices that use input only or output only portions
of an NTDS fast channel. Type B uses the same input
and output signal designations as type A.

TYPE C (ANEW).— Type C transfers parallel data
of up to 250,000 words per second on one cable. This
type of interface uses 0 vdc (logical 1) and +3.5 vdc
(logical 0 to transmit bit groupings of 16,30, or 32 bits,
depending on the type of computer. Type C can
transmit digital signals up to 300 feet depending on the
type of cable used. It is most frequently used in large
mainframe or some minicomputers to interface with
equipment found in the data processing, display, and
communication subsystems. Type C uses a request and
acknowledge protocol process. It transfers control and
data words using two cables: one input and one output
for the same channel. You may, however, encounter a
few devices that use input only or output only portions
of an NTDS ANEW channel. Type C uses the same
input and output signal designations as type A.

TYPE D (NTDS SERIAL)— Type D
asynchronously transfers serial data using a 10
megabits per second (Mb/s) clock rate over a single
coaxial cable. Two cables are required for bidirectional
communications, a source line (computer to peripheral)
and a sink line (peripheral to computer). The source
line is used to transmit data and external functions,
while the sink line is used to transmit input data and
external interrupt codes. Type D transfers are
accomplished using two types of bipolar pulse trains:
(1) control frames and (2) control and data words. The
actual input or output data is transmitted in 32-bit
information frames. Control frames are three bits in
length, a sync bit followed by two control bits. The
signals required for input transfer will occur on the input
channel (input request, input enable, and not ready) and
the signals required for output transfer will occur on the
output channel (output request, output enable, and not
ready). A binary 1 will be a pulse of phase zero degrees
and will be a high polarity followed by a low polarity.

7-22

A binary 0 will be a pulse of phase 180 degrees and will
be a low polarity followed by a high polarity. Type D
can transmit digital signals up to 1,000 feet.

TYPE E (NATO SERIAL).— Type E
asynchronously transfers serial data of up to 10 -million
bits per second on single triaxial cable. Channel control
is similar to NTDS parallel channels. This type
interface uses a bipolar plus or minus 0.6 volt nominal
(0.8 volt maximum). Type E can transmit digital
signals up to 1,000 feet depending on the type of cable
used. It is most frequently used in large mainframes to
interface with external equipment found in the data
processing subsystems (includes intercomputer
communication). Interfacing with an external device
uses a normal serial I/O interfacing: enable and request.
The channel interface uses a SIS/SOS protocol,
transferring control and data words using the following
word transfers: external function, output data, external
interrupt, and input data. The data (command or data)
words are transmitted in serial bursts of up to thirty two
32-bit words (1,024 bits). The burst transmissions are
coordinated using Sink Status (SIS) frames or Source
Status (SOS) frames. The SIS frame is sent from the
receiving device when it is ready to receive a burst. The
SOS frame is sent by the transmitting device to
coordinate and synchronize the burst transmission.

TYPE F (AIRCRAFT INTERNAL TIME
DIVISION MULTIPLEX (TDM) BUS).— Type F
transfers serial data up to one million bits per second
over a distance of 300 feet. A logical 1 will be
transmitted as a bipolar coded signal 1/0 (a positive
pulse followed by a negative pulse). A logic zero will
be a bipolar coded signal 0/1 (a negative pulse followed
by a positive pulse). This type interface transmits bit
groupings of 20 bits: data, sync wave form, and parity
bit. It is most frequently used in large mainframes to
interface with equipment found in the data processing
subsystems. Type F uses a command/response
protocol. Transfers include command, data, and status
words over a single channel. This interface can handle
up to 32 external devices on one channel; one device
must be a bus controller.

TYPE G (RS-449).— Type G equates with the
functional and procedural portions of RS-232.
However, the electrical and mechanical specifications
are covered by RS-422. Type G is intended to transfer
serial data above 20 kilo bits per second and up to 2
million bits per second over a single cable. Type G can
transmit data up to 200 feet. Signals are divided
between 37-pin and 9-pin connectors, and the ground
and common signals are handled separately for each

cable. Type G can send asynchronous serial data up to
9600 bits per second. This type of interface is used to
transmit bit groupings of 8, 16, or 32 bits depending on
the type of computer. Type G can be used in mainframe
and microcomputers. Type G uses primarily a
command and response protocol.

TYPE H (HIGH-SPEED PARALLEL).— Type
H transfers parallel data of up to 500,000 words per
second on one cable. This type interface uses 0 vdc
(logical 1) and +3.5 vdc (logical 0 to transmit bit
groupings of 16, 30, or 32 bits depending on the type of
computer. Type H can transmit digital signals up to 300
feet. It is most frequently used in large mainframes to
interface with equipment found in the data processing,
display, and communication subsystems. Type H uses
a request and acknowledge protocol process. It
transfers control and data words using two cables—one
input and one output for the same channel. It can also
interface with external equipment having a type C
interface. You may, however, encounter a few devices
that use input only or output only portions of an NTDS
slow channel. Type H uses the same input and output
signal designations as type A.

TYPE J (FIBER OPTIC NATO SERIAL).—
Type J is used for the fiberoptic implementation of type
E. A type J fiber optic channel converts a type E serial
bit stream into light pulses that are carried by a fiber
optic cable to a receiving device that converts the light
pulses back into a digital bit stream. For further details
on fiber optics, refer to NEETS 24, Introduction to
Fiber Optics.

Small Computer System Interface (ANSI
X3.131)

The small computer system interface (SCSI) uses a
digital parallel format. SCSI is pronounced “skuzzy.”
The SCSI is an 8-bit parallel, high-level interface.
High-level means that instead of a host computer asking
for data by specifying a track, cylinder, and sector
number, all it asks for is a logical sector number. The
SCSI then translates the logical sector number into the
actual disk location.

The SCSI also has other improvements over
previous disk drive interfaces. For example, it can
transfer data at rates up to 20 megabits per second,
handle hard disk drives of almost any size, disconnect
itself from the host computer’s bus while it processes
requests, and daisy-chain up to eight units off of one
controller.

7-23

The SCSI interface uses one 50-pin ribbon cable to
connect the hard disk drive(s) to the controller card
mounted on the host computer. Some computer
manufacturers include the SCSI electronics in their
motherboards and do away with a separate controller
card.

RS-232 (EIA RS-232 and MIL-STD 188)

An RS-232 interface uses a serial format. It can be
used for asynchronous and synchronous serial transfers.
It can be used with mainframes, minicomputers, and
microcomputers for communication with external
equipments, particularly with microcomputer systems.
RS-232 channels/ports are capable of transmitting from
50 to 19,200 baud of 7- or 8-bit asynchronous characters
and 7- or 8-bit synchronous characters to 9600 baud.
RS-232 limits cable transfers to 50 feet with a maximum
transmission speed of 20,000 bits per second. In
microcomputers and their external equipments, the
Configuration of the channel/port is normally hardware
controlled through the use of DIP switches. The
number of bits per character (7 or 8), baud rate (110,
300, 600, 1200, 4800, 9600, or 19200), parity setting
(odd, even, or no parity), and protocol selection
(ready/busy or X-ON/X-OFF) are examples of
controlled configuration parameters. Some computer
systems allow for software control of these parameters
but most peripherals that accept the RS-232 have a DIP
switch configuration to make them compatible with a
variety of computer interfaces.

RS-232 serial channel/port uses a 25-pin cable
connector (DB-25) and transmits signal levels of +5 to
+25 volts (HIGH or SPACE) and -5 volts to -25 volts
(LOW or MARK). An RS-232 receives and recognizes
transition difference of 6 volts (+3 volts and -3 volts)
(fig. 7-19). A positive difference and more than +3

Figure 7-19.—RS-232.

volts indicates a HIGH and a negative difference and
more than -3 volts indicates a LOW. Signal
designations are discussed in serial I/O operations. An
interface that uses RS-232 interface signals is
VACALES (Variable Character Length Synchronous).
It is synchronous to 32,000 baud transferring 1 to 16
bits.

RS-422 (EIA RS-422)

The RS-422 interface uses a serial format. RS-422
uses RS-232 functional specifications. RS-422 uses
two separate wires to allow transmission at a higher rate.
This technique, called balanced circuitry, doubles the
number of wires in the cable, but permits very high data
rates and minimizes the problem of varying ground
potential. The high data rates include up to 10 megabits
per second in distances of meters and 100 kilobits per
second at 1.2 kilometers. RS-422 grounding
requirements are much less critical than RS-232. With
the elimination of the grounding problem, the receiver
transition period is narrower: .4 volt (+.2 volt and -.2
volt).

Token Ring (IEEE 802.5)

Token ring is used for work group solutions and
work station intensive networks. It transfers serial I/O
data. It has the ability to operate at a 4- or 16-megabits
per second rate of data communication. It allows PCs
and mainframes to operate as peers in the same network.
In a token-passing ring network, a stream of data called
a token circulates through the network stations when
they are idle. A station with a message to transmit waits
until it receives a free token. It then changes the free
token to a busy token, and transmits a block of data
called a frame immediately following the busy token.
The frame contains all or part of the message the station
has to send.

The system does not operate by having one station
accept a token, read it, and then pass it on. Instead, the
stream of bits that make up a token or message might
pass through as many as three stations. Once a station
becomes a busy station, there is no free token on the
line. That means other stations must wait until the
receiving station copies the data and the frame
continues around the ring until it completes a round-trip
back to the transmitting station. This guarantees that
only one station at a time transmits data. A typical
token ring (fig. 7-20) provides for unlimited
expandability by use of multistation access units
(MAUs) and hubs (concentrators).

7-24

Figure 7-20.—A typical token ring network.

The recommended cable for a typical token ring
setup is two pairs of twisted wire covered by a foil
shield. Maximum cable length between the token-ring
hub and the attachment point for the network node
cannot exceed 150 feet. Provisions are also available
for linking hubs through fiber optic cable. Connectors
include “D” shell for the twisted pair wire and fiberoptic
connectors (MIL-C-28876). Cabling for the token-ring
prevents one bad cable from bringing down the entire
system.

IEEE 802.3 (Ethernet DIX)

IEEE 802.3 is a specification that describes a
method for computers and data systems to connect and
share cabling (i.e., PC’s and mainframes). It transfers
serial I/O data in a specific packet format (fig. 7-21).
The IEEE 802.3 standard is commonly referred to as
Ethernet. Although Ethernet and 802.3 share the same
cable access mode (carrier sense multiple access), they
differ in both physical implementation and actual
packet make-up. Ethernet preceded IEEE 802.3 by
almost 10 years. Ethernet was developed by Robert
Melcalf at Xerox’s Palo Alto Research Center. Ethernet
is the forerunner of IEEE 802.3. Because of the
differences in packet formation and physical
construction of the equipment associated with each of
these standards, the networking community currently
follows the original Ethernet standard implementation
by the DIX suffix (DIX stands for DEC, Intel, and
Xerox, the original collaborators on the Ethernet
standard).

Figure 7-21.—802.3 and Ethernet packet formats.

7-25

Figure 7-22.—Manchester code used in Ethernet.

Both Ethernet (DIX) and IEEE 802.3 can be used
on the same data communications network, but they
cannot talk to each other. Data in an 802.3 network is
encoded using a Manchester code as shown in figure
7-22. The differences between an 802.3 packet and an
Ethernet packet can be seen in figure 7-21. When
viewing figure 7-21, pay close attention to the items
directly below the vertical arrow in order to determine
an Ethernet (type field <46) or an 802.3 (length field
≥46).

Continuous transitions of the Manchester code
allow the channel to be monitored easily for activity.
This is part of the Collision Detection/Collision
Avoidance characteristics of Ethernet (DIX) and IEEE
802.3. This ability to detect activity allows stations to
release the channel after using it for a short period of
time, thereby increasing data transmission through-put.

Ethernet (DIX) and IEEE 802.3 may use a shielded
coaxial cable (RG-58 A/U) to transfer serial data using
baseband transmission at 10 megabits per second.

Baseband information implies data transmitted without
the use of a carrier and with only one channel defined
in the system. When a station is transmitting, it uses the
entire 10 megabits per second. The data is transferred
PC to PC using a daisy chain configuration (fig. 7-23).
Thin Ethernet is used in smaller systems using an
overall coaxial cable length of 600 to 1000 feet. Thin
Ethernet 802.3 uses T-connectors (UG-274) to connect
the PCs. Thick-net (RG-11, BIG YELLOW CABLE)
is used in larger systems with overall shielded coaxial
cable lengths of 500 meters. Thick-net networks
employ a file server and a transceiver (fig. 7-24)
connected together using 15-pin “D” shell connectors.
Terminating resistors are used at the end of each
T-connector to ensure proper operation. Ethernet
(DIX) and IEEE 802.3 networks are also commonly
implemented using shielded and unshielded twisted
pair cable. Coaxial cable implementations are known
as 10Base5 (RG-58) and 10Base2 (RG-11 Thick-net).
Shielded and unshielded twisted pair cable networks are
known as 10BaseT.

Figure 7-23.—Daisy chain in an Ethernet.

7-26

Figure 7-24.—Ethernet/IEEE 802.3 transceiver.

Centronics Parallel

The Centronix compatible parallel channel is the
alternate interface to the RS-232 on many
microcomputer systems. This channel type is designed
to transmit parallel 8-bit bytes over eight data lines
simultaneously. The Centronics compatible channel is
a single direction channel (output only) as far as data is
concerned. Centronics Compatible Parallel uses a
command/acknowledge protocol. There are several
control signals sent to the receiving device and status
signals returned from the receiving device. We cover
signal designation under parallel operations of single
cables.

ST-506/412

The ST-506/412 interface was developed by
Seagate Technology, Inc. It is often used in the hard
disk drives installed in older IBM-compatible desktop
computers that have a maximum capacity of 125
megabytes. It is also the interface used to control most
floppy drives today.

This is one of the interfaces where most of the
electronics is actually on a controller card mounted in
the host computer. With this interface, the controller
card does most of the work (moving the magnetic head,
spinning the disk, and so on). The controller card also
cleans any data coming from the disk drive by stripping
off the formatting and control signals that were used to
store the data onto the hard drive.

A hard disk drive is connected to the controller card
in the host computer via two ribbon cables (a 34-pin
control cable and a 20-pin data cable). Floppy drives
use only the 34-pin control cable to transfer both data
and control signals.

When this interface was originally developed in
1981, its 5-megabits per second transfer rate was
considered too fast. It was actually slowed down by a
6:1 interleave factor so it could operate with the
computers being built at the time. With today’s transfer
rates pushing the envelop at 24 megabits per second,
you can see that it is now one of the slowest interfaces.

Enhanced Small Device Interface (ESDI)

The enhanced small device interface (ESDI) is an
optimized version of the ST-506/412 interface. The
main difference is that with ESDI, most of the disk
drive’s interface electronics is located in the disk drive
itself, rather than on a controller card in the host
computer. The result is a much faster transfer rate and
more hard disk capacity. ESDIs have a transfer rate of
up to 24 megabits per second. And, they can handle
disk drives with a maximum capacity of 1.2 GB
(gigabyte).

The ESDI uses the same interface cables as the
ST-506/412 interface, but that is where the similarity
ends. With ESDI drives, only the clean data is sent to
the controller card in the host computer. All formatting
and control signals are stripped off at the hard disk
drive.

Integrated Drive Electronics (IDE)

The integrated drive electronics (IDE) interface
was developed as a result of trying to find a less
expensive way to build computer systems. It includes
all of the controller card electronics in the hard drive
itself; thus, the hard drive does all the work.

The hard disk drive connects to the host computer’s
bus with a 40-pin ribbon cable. The ribbon cable
connects directly to either a 40-pin connector on the
host computer’s motherboard or a 40-pin connector on

7-27

a small interface card that plugs into the host computer’s
motherboard. This interface offers transfer rates of up
to 1 MB and can handle hard drives with a maximum
capacity of 300 MB.

Enhanced Integrated Drive Electronics (EIDE)

The Enhanced Integrated Drive Electronics (EIDE)
was developed from the IDE standard. New features
available with EIDE include Plug-n-Play compatibility,
increased maximum drive capacity, faster data
transfers, and the ability to use a CD-ROM or tape drive
with an the interface.

The IDE interface can address a hard drive with a
maximum of 504MB. EIDE increases the maximum
size of a hard drive by using an enhanced BIOS. The
enhanced BIOS uses a different geometry when
communicating with a program than it does when
communicating with the hard drive. For example, the
BIOS will tell a program that a hard drive with 2,000
cylinders and 16 heads is a drive with 1,000 cylinders
with 32 heads. The BIOS controls the address
translation to keep track of where the data is physically
located on the hard drive.

The EIDE interface uses a Programmed
Input/output (PIO) mode to transfer data from the drive.
There are five PIO modes that can be set to control data
transfers. PIO Mode 0 is the slowest with a cycle time
of 600 nanoseconds. Pio Mode 4 has a cycle time of
120 nanoseconds, which is 16.6 megabytes per second.
Most high-end hard drives will support Mode 3 or Mode
4 operations. Using the enhanced BIOS, the hard disk
responds to the Identify Drive command with
information concerning the PIO and DMA modes the
drive can support. The BIOS will automatically set the
PIO mode to match the capability of the drive. If a drive
is set to a higher mode than it is capable of supporting,
data corruption will occur.

I/O SERIAL DATA OPERATIONS

Serial data operations exchange information via a
single path, line, or wire. The channel/port itself is
made up of several wires, but only one is used to transfer
the binary data. Bidirectional channels may use two
wires for data, one for each direction or a single tristate
bidirectional line. The remaining wires are used for
device addressing and to provide the protocol (channel
control) for information exchange. The data is in the
form of an asynchronous or synchronous bit stream.
The bit stream is made up of a sequential series of data
and/or control pulses in one of these two mutually

7-28

exclusive formats. Serial data operations can use a
minimum of 4 conductors and up to 37 conductors to
perform serial data operations. Serial operations
generally exchange information between data
communications equipment (DCE) and data
terminal equipment (DTE). The DCE configured
device is considered the controller for the interface.
The DTE is either the computer or a channel
controller. There are variations in the channel pin
connections that depend on the device mode of
operation (DCE or DTE).

Asynchronous Data Exchanges

Asynchronous data is also known as character
framed data; only one character at a time is sent. Each
character is composed of either 7 or 8 bits (depending
upon the coding scheme used), and is identified by a
start and stop bit. At the minimum, each character is
preceded by a start bit and followed by one stop bit.
Asynchronous data transmission protocol allows for a
maximum of the following in sequence: one start bit,
eight data bits, a parity bit, and one stop bit for each
character to be exchanged.

The purpose of a start bit is to notify the modem
that a character is being sent (or received). The bits that
make up the character immediately follow the start bit.
After all these bits have been transmitted, a stop bit is
inserted to indicate the end of the character. Start and
stop bits can immediately follow one another or there
can be a period of idle time following the stop bit,
depending upon the hardware device in use. During an
idle condition, in which no characters are sent, a
continuous MARK signal (equivalent to a logic 1) is
transmitted for one bit time. Asynchronous
transmission is normally used when transmission rates
are between 600 to 2000 bps. The particular format
used varies between computers and may be hardware or
software controlled depending on the type of interface
logic and devices used.

Synchronous Data Exchanges

When more speed is required for sending
information, synchronous data exchanges fulfill the
requirement. Synchronous data is also known as
message framed data. The bit stream is divided into
blocks of sequential bits grouped into individual
messages, without the need for start and stop bits.
Again, each character is composed of either 7 or 8 bits.
There are two methods for controlling the exchange of
messages. External control and timing signals may be

transmitted over the I/O channel control lines and used
to synchronize the message transfer, or the message
itself may be preceded and succeeded by a string of
special synchronization (sync) characters. The sync
characters allow the receiving device to frame and
receive the message data. Messages preceded by sync
pulses are followed by one or more special
synchronization (sync) characters to indicate the end of
a particular bit stream. Often several different types of
messages are sent over the same channel. The message
contents identify the type of message and the
destination (addressed peripheral).

DCE/DTE Serial I/O Cable Signals

With serial operations, one cable will suffice to
perform serial I/O operations with an external device.
Each of the signal leads is assigned a specific function.
These functions can be assigned one of four specific
groupings: data (both primary and secondary), control
(again, both primary and secondary), timing, and
ground. Each of these groupings is indicated by a letter
in figure 7-25 and is further described in the legend. We
use an RS-232 as our example in this discussion.
Although the connector itself is not specified in the
standard, a 25-pin connector (such as the one shown in
figure 7-25) has become the generally accepted

Figure 7-25—A typical RS-232 female connector.

7-29

standard for implementing an RS-232 connection.
Now, let’s take a pin-by-pin tour of the RS-232 interface
and look at the signals to see how they function.

RS-232 Pin Description

The 25 pins of the RS-232 have the following
functions:

Pin 1, Protective Ground— is connected to the
equipment’s chassis and is intended to connect one
end of a shielded cable, if such a cable is used. The
shield of a shielded cable must NEVER be
connected at both ends. Shielded cable is used to
reduce interference in high-noise environments.

Pin 7, Signal Ground— is the common reference
for all signals, including data, timing, and control
signals. In order for DCE and DTE to work
properly across the serial interface, pin 7 must be
connected at both ends. Without it, the interface
would not work because none of the signal circuits
would be completed.

Pin 2, Transmitted Data
Pin 3, Received Data— Pins 2 and 3 are the pins of
most importance; for if it weren’t for the data that
passes through them, the remaining pins would not
be needed. Data is normally transmitted in the
following manner. The DTE transmits data on pin
2 and receives data from the DCE on pin 3 as
described in figure 7-25 and shown in figure 7-26.
Figure 7-26 illustrates the absolute minimum
wiring required under the RS-232 interface for
normal DTE-DCE communication.

Pin 4, Request to Send
Pin 5, Clear to Send— Pins 4,5,6, and 20 are the
handshaking signals. These pins establish the
communications link. Normally terminals cannot
transmit data until a clear to send transmission is
received from the DCE.

Pin 6, Data Set Ready
Pin 20, Data Terminal Ready— Data set ready is
used to indicate that the modem is powered on&d
is not in a test mode (modem ready). In dial-data
or dial up applications, data terminal ready is used
to create the equivalent of an off-the-hook condition.
When the modem is in an auto-answer mode, the
DTR is activated in response to the ring indicator
and tells the modem to answer the incoming call.

Pin 8, Data Carrier Detect— The modem
activates the data carrier detect whenever it receives
a signal on the telephone line of sufficient strength
for reliable communications. Many types of DTE

Figure 7-26.—A typical DTE to DCE connection showing the
minimum wiring required under the RS-232 interface
standard.

require this signal before they will accept or trans-
mit data. In applications where no modem is present,
this pin is normally tied to pin 20, which in most
cases is activated whenever the DTE is powered up.

Pin 22, Ring Indicator— The ring indicator signal
is the means by which the DCE informs the DTE
that the phone is ringing. All modems designed for
direct connect to the phone network are equipped
with auto answer. That is, the modem is able to
recognize standard ringing voltage, indicate the
ringing to the DTE, and answer (take the line
off-the-hook) when told to do so by the DTE. The
DTE tells the modem to answer the phone by
activating pin 20, data terminal ready.

The 10 pins and signals we have just described to
you are the ones most often used of those defined in the
RS-232 standard.

Pin 15, Transmit Clock
Pin 17, Receiver Clock
Pin 21, Signal Quality Detector
Pin 24, External Clock— Synchronous modems
use the signals on these pins. Pins 15, 17, and 24
control bit timing. Pin 21 indicates that the quality
of the received carrier signal is satisfactory.
Because the transmitting modem must send
something (either a 0 or a 1) at each bit time, the
modem controls the timing of the bits from the
DTE. In turn, the receiving modem must output a
bit and associated timing whenever received. Pin
15 (Transmitter Signal Element Timing—DCE

7-30

source), and pin 17 (Receiver Signal Element
Timing—DTE source) are used for these purposes.

Pin 23, Data Rate Select— This entry according to
figure 7-25 looks like there should be two pins as-
signed, but actually it is either data rate select (DTE
source) or data rate select (DCE source). Some
modems, called dual-rate modems, allow switching
between two transmission speeds. Sometimes the
speed is selected automatically by the modem
during the initializing sequence, or it may be
selected by the transmitting DTE. The signal on pin
23 determines whether the modem uses the low or
high speed. Usually the modem at the calling end
sets the speed for the connection and informs its
DTE. The calling modem signals the speed to the
answering modem, which informs the called DTE
by activating data rate select (DCE source).

Pin 12, Secondary Data Carrier Detect
Pin 13, Secondary Clear to Send
Pin 14, Secondary Transmitted Data
Pin 16, Secondary Received Data
Pin 19, Secondary Request to Send— Some
modems are equipped with both primary and
secondary channels. The five secondary signals
listed allow control of the secondary channel in the
same way as described for the primary channel
(pins 2, 3, 4, 5, and 8). In these modems, the
primary transmission channel usually has the
higher data rate, and the secondary channel
transmits in the reverse direction with a much lower
data rate, for example, 75 bps. Other signals that
could be used (depending on the interface used) but
not discussed include: send common, receive
common, terminal in service, new signal, select

frequency, local loopback, remote loopback, test
mode, select standby, and standby indicator.

I/O PARALLEL DATA OPERATIONS

Parallel data operations provide a multiwire
communication path between the computer and one or
more peripheral equipments. Parallel data operations
use a request/acknowledge protocol. Generally speak-
ing, a parallel channel is designed to transfer all the bits
of a given byte or memory word, depending on the size
of the computer and interface requirements, simultane-
ously. There is a separate data path or line for each bit
that makes up the byte or word. The parallel channel
handles data bytes or words in the same manner as the inter-
nal workings of the computer. There is no requirement
to convert the byte or word to a sequential bit stream as
there is in serial channel operations. There is, however,
the need to drive or receive (detect) the digital signals
over the I/O cables. The IOA or line driver/receiver on
a pcb provides the means to accomplish this.

With parallel operations, there are two ways the
computer can communicate with each external device.
The computer can use a single cable to handle the
parallel input and/or output operations or two cables: an
input cable for the computer to receive information
from an external device and an output cable for the
computer to send information out to the same external
device. The two cables will constitute one channel.
Some computers can have up to 64 I/O channels. The
I/O channels are usually identified by the octal
numbering system. Thus, if you had a computer with
16 channels, the octal number assignments would be 08

through 178. Also, the channels are often arranged in
groups with 4 channels per group. The parallel channel
itself (fig. 7-27) consists of 8 or more data lines (8, 16,

Figure 7-27.—Example of parallel channel architecture (two cables).

7-31

30, 32, 64, and so forth), and a number of control lines
for passing signals that govern the transfer of
information and coordinate operations of the computer
and the peripheral device. In most computers, the data
lines themselves are used to transmit control
information (external functions) to the peripheral
device, and to pass device status (status words and
interrupt codes) to the computer.

We discuss parallel computer to external devices
data operations using one and two cables; then we
discuss intercomputer parallel data operations.

Computer to External Equipment (Single
Cable)

With the computer to external equipment (single
cable) set up, all the signals required to carry out parallel
data operations are contained on a single cable. The
number of lines in this setup can vary from 7 to 25; it
will depend on the computer and the external device(s).
We use an 8-bit computer as example of the lines used
by a single parallel cable format (fig. 7-28). Other
signals that could be used, but are not discussed,
include: page end, auto feed, error, initialize external
device (specific device name), and select input.

GROUND.— The ground signal ensures there is a
complete circuit so there is current, thus enabling the
signals to flow through the conductor and not collect at
one end of the circuit (conductor). There are two
grounds: one is a signal ground and the other a chassis
ground connected to the device’s chassis or ground.
These signals do not move in either direction.

DATA STROBE.— The data strobe is sent from the
computer to the external device. This signals the

Figure 7-28.—Single parallel cable.

7-32

external device that information is ready to be read from
the data lines. The computer first puts the signals for
all the data bits on the data lines, waits briefly to be sure
the signal is stable, and then activates the data strobe
line. When the external device sees that the data strobe
signal has been sent, it accepts the character from the
eight data lines.

BUSY SIGNAL.— The busy signal is sent from the
external device to the computer to tell it not to send any
more data. The external device maybe busy for various
reasons. For example, it may still be in the process of
obtaining information or the buffer maybe frill.

SELECT SIGNAL.— The select signal usually
corresponds to some sort of switch that must be in the
enabled position by the external device. An example is
an ONLINE switch on a printer. If it is disabled, the
computer will be able to sense that something is wrong.

ACKNOWLEDGE SIGNAL.— The acknowl-
edge signal is sent from the device to the computer to
say that it has successfully received information (a
character is this case). Thus instead of sending
information at a constant rate, the computer waits for a
positive indication that each character has been received
before sending the next one.

DATA LINES.— Input/output data and interrupt
bits are sent or received from the computer on these
lines.

Single Cable Sequence of Events

The general sequence of events for a single cable
parallel operations is as follows:

1. The computer puts the character on the data
lines and sends the data strobe signal to tell the external
device the data is there.

2. As soon as the external device sees the data
strobe, it turns on the busy signal, telling the computer
to wait while it reads the character from the data lines
into its buffer.

3. Once the external device has processed the
character, it sends the acknowledge signal and
simultaneously removes the busy signal.

4. This tells the computer that it is all right to send
another character and the process is repeated.

Computer to External Equipment (Two
Cables)

Two cables will make up one channel. As stated
with two cables, one cable will specifically handle
input functions and the other cable will handle output
functions. Refer again to figure 7-27. Notice the
direction of information flow. Data request signals are
always sent from the external equipment to the
computer. The acknowledge signals are always sent
from the computer to the external equipment.

INPUT CABLE.— The input cable contains
control lines and data lines. The number of lines will
vary with the type of computer. They range from 8 to
64 lines. The operating mode (single, dual, and so on)
has an effect on the number of lines affected. External
devices send input data words and interrupt codes to the
computer via input data (ID) lines. The information
carried over these lines is as follows:

l External Interrupt Enable (EIE) —The computer
sends the external interrupt enable signal to the external
device to indicate it is ready to accept an external
interrupt code word on that channel.

l Input Data Request (IDR) —The input data
request control signal accompanies each input data
word sent to the computer from the external device.
The external device informs the computer that it has
placed an input data word on the lines.

l External Interrupt Request (EIR) —The external
interrupt request control signal accompanies each
interrupt code sent to the computer from the external
device. It informs the computer that an interrupt code
is on the data lines.

l Input Data Acknowledge (IDA) —The input data
acknowledge control signal informs the external
equipment that the computer has sampled the input
word or interrupt code on the input data lines on that
channel.

OUTPUT CABLE.— The output cable contains
control lines and data lines. Again the number of lines
will vary with the type of computer. They range from
8 to 64 lines. The operating mode (single, dual, and so
on) has an effect on the number of lines affected.
Output data words and external function words are sent
to the external device via data lines. The information
carried over these lines is as follows:

l External Function Request (EFR) —The external
device sends the external function request signal to the
computer indicating that it is ready to accept an EF code
word on that channel.

. External Function Acknowledge (EFA) —The
computer sends the external function acknowledge
signal to the external device indicating that it has placed
an EF code word on the OD lines of that channel. This
signal accompanies each function codeword sent to the
external device.

s Output Data Request (ODR) —The external
device sends the output data request control signal to
the computer indicating that it is ready to accept an
output data word.

l Output Data Acknowledge (ODA) —The
computer sends the output data acknowledge signal to
the external device indicating it has placed a word of
data on the OD lines of that channel. This signal
accompanies each output data word sent to the external
device. It informs the external device that an output
data word is on the data lines.

Two Cable Sequence of Events

The sequence of events using an input, output,
external function (buffered), and external interrupt
operations is described from the computer’s point of
view. We begin from the point that an input data (ID),
output data (OD), an external function (EF), or an
external interrupt (EI) has been established for a
channel. The computer and the external equipment on
that charnel transfer data as described in the following
paragraphs. Refer back to figure 7-27.

INPUT DATA (ID) SEQUENCE OF
EVENTS.— We begin from the point that an ID has
been established for a channel. The computer and the
external equipment on that channel will do the
following to transfer data:

1.

2.

3.

4.

The external equipment places a word of data
on the ID lines.

The external equipment sets the IDR line to
indicate that a word of data is on the ID lines.

The computer detects the setting of the IDR line
in accordance with internal priorities.

The computer samples the data word that is on
the ID lines.

7-33

5 .

6 .

7 .

The computer sets the IDA line, indicating that
it has sampled the data word on the ID lines.

The external equipment detects the setting of the
IDA line. The external equipment may clear the
IDR line anytime after detecting the setting of
the IDA line, but will clear the IDR before the
computer will recognize the next IDR.

The computer clears the IDA line before reading
the next word on the ID lines.

—

OUTPUT DATA (OD) SEQUENCE OF
EVENTS.— We begin from the point that an OD has
been established for a channel. The computer and the
external equipment on that channel will do the
following to transfer data:

1 .

2 .

3 .

4 .

5 .

6 .

7 .

When the external equipment is ready to accept
data, it sets the ODR line (this may already have
happened before the OD buffer was
established).

The computer detects the setting of the ODR
line in accordance with internal priorities.

The computer places a word of data on the OD
lines.

The computer sets the ODA line to indicate that
a word of data is on the OD lines.

The external equipment detects the setting of the
ODA lines. (The external equipment may clear
the ODR line anytime after detecting the setting
of the ODA, but clears the ODR line before the
computer will recognize the next ODR).

The external equipment samples the data word
that is on the OD lines.

The computer clears the ODA line before
placing the next word on the OD lines.

EXTERNAL FUNCTION (EF) SEQUENCE
OF EVENTS (NORMAL).— We begin from the point
that an EF has been established for a channel. The
computer and the external equipment on that channel
will do the following to transfer:

1 .

2 .

3 .

When the external equipment is ready to accept
an EF code word, it sets the EFR line (this may
have already happened before the EF buffer was
established).

The computer detects the setting of the EFR line
in accordance with internal priorities.

The computer places an EF code word on the
OD lines.

4.

5 .

6 .

7 .

The computer sets the EFA line to indicate that
the EF codeword is on the OD lines.

The external equipment detects the setting of the
EFA line. The external equipment may clear the
EFR line anytime after detecting the setting of
the EFA line, but clears the EFR line before the
computer will recognize the next EFR.

The external equipment samples the EF code
word that is on the OD lines.

The computer clears the EFA line before placing
the next word on the OD lines.

Forced external functions are the same as normal
external functions except the computer does not require
an external function ready signal from the external
equipment, so the computer will not be delayed by steps
1 and 2.

EXTERNAL INTERRUPT (EI) SEQUENCE
OF EVENTS.— The computer and the external
equipment do the following to transfer an EI code word:

1 .

2 .

3 .

4.

5 .

6 .

7 .

8 .

9 .

10 .

The computer, under program control, sets the
EIE line when ready to accept an EI.

The external equipment detects the state of the
EIE line.

When the status requires that the computer be
interrupted, the external equipment places an
EI code word on the ID lines.

The external equipment sets the EIR line to
indicate that the EI codeword is on the ID lines.

The computer detects the setting of the EIR line
in accordance with internal priorities.

The computer samples the EI codeword that is
on the ID lines.

The computer clears the EIE line.

The computer sets the IDA line.

The external equipment detects step (8) or both
steps (7) and (8). The external equipment may
clear the EIR line anytime after detecting the
setting of the IDA line, but clears EIR line
before the computer will recognize the next
EIR.

The computer clears the IDA line before
sampling the next word on the ID lines.

NOTE: Not all computers have the EIE
lines; consult your computer’s technical
manual.

7-34

The computer and external device repeat these
sequences for each successive word of data until they
have transferred the block of data words specified by
the input buffer control words.

Intercomputer I/O Operations

Parallel channels are often used to communicate
between two stand-alone computers. In this mode, the
computers will appear as external devices to each other.
One computer will be designated the transmitting
(outputting) computer; the other computer will be
designated the receiving (input) computer. A similarity
exists between intercomputer channels and normal
channels. The two cables are identical; in this mode all
the signals remain the same except ODA and ODR,
which become ready and resume respectively. Figure
7-29 illustrates the interface between two computers.

The two types of information transferred over the
intercomputer channels data lines are command words
and data words. Command words are used to
exchange external function data, which includes
external functions, forced external functions and
external function buffer words, between the
transmitting computer and the receiving computer.
Data words are sent as part of output data buffers from
the transmitting computer and accepted as part of the
receiving computers input data buffer. Command
words use additional interface signals to identify their
function and to coordinate their transfer. When the
transmitting computer generates an external function
acknowledge signal with the ready signal, the data word
transmitted is identified as a forced external function or
an external function command word. The external

interrupt enable signal is set to identify the command
word as an external function command word. If the
external interrupt enable is not set, the command word
is a forced external function.

The sequence of events for intercomputer
command word and data transfers is as described in the
following paragraphs.

INTERCOMPUTER COMMAND WORD
TRANSFER (BUFFERED).— Whenever the
transmitting computer has an EFR line and the receiving
computer has an EIE line, transfer of buffered
command words is possible. As you read, refer to figure
7-29; we designate computer A as the sending computer
and computer B as the receiving computer. Whenever
an EF buffer has been established in the transmitting
computer for a channel, the transmitting computer and
the receiving computer do the following to transfer a
command word:

1 ✎

2 ✎

3 .

Computer B, under program control, sets the
EIE line when it is ready to accept an EF
command word from computer A.

In accordance with internal priority, computer
A recognizes the EIE as an EFR and places the
EF code on the data lines. The EF command
word will be held on the data lines until
computer B sets the resume line or until
computer A’s program intervenes to resolve the
no resume condition.

Computer A sets the EFA line to indicate that
the EF command word is on the OD lines.

Figure 7-29.—Intercomputer interface.

7-35

4. In accordance with internal priorities, computer
B detects the setting of the EFA line of computer
A (which will be recognized as the EIR line) and
samples the ID lines.

5. Computer B clears the EIE line.

6. Computer B sets the IDA line.

7. Computer A detects the setting of the IDA line
of computer B (which will be recognized as the
resume line).

8. Computer A clears the EFA line before placing
the next word on the OD lines, and computer B
clears the IDA line before reading the next word
on the ID lines.

NOTE: Whenever the transmitting
computer does not have an EFR line, or the
receiving computer does not have an EIE line,
a command will be transferred with force. For
forced transfers, step 3 and step 7 are not
used.

Computer A and computer B repeat this sequence
for each successive command word until they have
transferred the block of command words specified by
computer B’s EF buffer control words.

INTERCOMPUTER DATA TRANSFER.—
Whenever an OD buffer has been established in
computer A and an ID buffer has been established in
computer B for the same channel, computer A and
computer B transfer data. Again refer to figure 7-29
with computer A as the sending computer and
computer B as the receiving computer. The sequence
is performed as follows:

1.

2.

3.

4.

5

Computer A places a word of data on the OD
lines. The OD word is held on the data lines
until computer B sets the resume line, or until
computer A’s program intervenes to resolve the
no resume condition.

Computer A sets the ready line to indicate that
a word of data is on the OD lines.

In accordance with internal priorities, computer
B detects the setting of the ready line of
computer A (which will be recognized as the
IDR line).

Computer B samples the ID lines.

Computer B sets the IDA line.

6.

7.

Computer A detects the setting of the IDA line
of computer B (which will be recognized as the
resume line).

Computer A clears the ready line before placing
the next word of data on- the OD lines, and
computer B clears the IDA line before sampling
the next word of data on the ID lines.

Computer A and computer B repeat this sequence
until they have transferred the block of words specified
by the buffer control words. Buffer lengths specified
by each computer are the same.

SUMMARY—INPUT/OUTPUT (I/O)
AND INTERFACING

This chapter has introduced you to how computers
communicate with and control other computers and
external devices. The following information
summarizes important points you should have learned:

I/O ORGANIZATION— All computers are
capable of I/O operations. Some rely on the CPU to
handle I/O operations. Others have an I/O processor
(IOC). An I/O processor enables the computer to
perform other operations while still performing I/O
operations.

I/O PROCESSOR— An I/O processor (IOC)
controls the transfer of information between the
computer’s main memory and the external equipments.
IOCs are packaged in (1) IOC/IOA modules or multiple
IOC/IOA pcb’s, and (2) I/O pcb’s. The IOC relieves the
CPU of the necessity to perform the time consuming
functions of establishing, directing, and monitoring
transfers with external equipments. Data and control
signals are exchanged with external equipments via the
IOA. The IOA changes the input and output control and
data signal voltages to the voltage requirements of the
computer or external equipments. Communication
between the IOC and the IOA is by means of a
bidirectional bus.

I/O DATA ARRANGEMENTS— The types of
information exchanged between the computer and the
external equipments fall into two basic categories: data
words and control words. Data words represent the
alphabetic and numeric information exchanged.
Control words specify an action to be accomplished by
an external equipment.

I/O DATA FORMATS— Computers exchange
data in either parallel or serial format. When the
computer uses a parallel configuration, all bits of
information represented by a byte or word are input or

7-36

output simultaneously. When the computer uses a serial
configuration, all bits of information are input or output
one at a time.

I/O INSTRUCTIONS— All computers have I/O
instructions. Command instructions are executed by
the IOC under the control of the CPU’s main program.
They provide control over IOC single-and dual-channel
operations. A chain consists of IOC control words,
command words, output data words, and specified
locations for external status words and data words
returned (input) from the channel.

I/O OPERATIONS— Input/output operations are
initiated by the CPU. Computers with an IOC begin I/O
control functions only after an initiate I/O or equivalent
instruction is executed by the CPU. Computer
instructions inform the external equipment which type
of operations to perform with function codes. They also
specify memory areas for input and output information.

OPERATING MODES— I/O operations include
both digital and linear ICs. The linear IC circuits are
the first and last type of circuitry the information
interfaces with when entering and leaving the computer.
Registers in I/O operations provide the interfacing
between the CPU, I/O, and memory. They enable and
route control and data information between the CPU,
I/O, and memory using the internal bus system. The
data registers are used to hold or buffer data during
interchanges between the very fast CPU and the slower
external equipments. The status registers hold
information for the CPU that indicates the operating
condition and current activities of the external
equipments.

I/O FUNCTIONS— The input and output
functions performed by an I/O processor are defined
and enabled through the interpretation and execution of
input/output and/or input/output controller (I/O(C))
commands obtained from main memory.

DIRECT CPU INTERFACE— With direct
communication, also called accumulator-based I/O, the
peripheral devices are tied directly into the CPU
communication bus (control bus, data bus, and so forth).
In a simple I/O scheme, the CPU handles all I/O
transactions by executing one or more instructions for
each word of information transferred.

DIRECT MEMORY ACCESS (DMA)— DMA
allows blocks of information to be transferred directly
in and out of memory and from and to an external device
without any CPU intervention. Information is
transferred at a speed compatible with that of the

external device. A DMA controller is usually placed
between the external device and the computer’s bus.

I/O INTERFACING— Computers may have a
small number of channels or ports with multiple
equipments connected to each channel; or they may,
particularly in larger computers, have a number of I/O
channels with limited numbers or types of external
equipments on each channel or port.

I/O INTERFACING STANDARDS— There are
two major types of computer/external equipment
communication formats: serial and parallel. The
communication formats are governed by the standard
that is identified by the interface. As a general rule, the
standards can be divided into four categories:
mechanical, electrical, functional, and procedural.

I/O INTERFACING COMPONENTS— The
computer’s I/O processor must ensure that the voltage
levels between the computer and the external
equipments are compatible. The primary circuitry that
accomplishes this is located on an I/O pcb or
modules/pcb’s that make up an IOA. Some of the
primary I/O interfacing hardware include universal
receiver-transmitters, line drivers, and line receivers.

UNIVERSAL RECEIVER-TRANSMITTER—
Within a digital computer, the data is transferred
internally using a parallel format. All the bits of a byte
or memory word are exchanged simultaneously
between registers, buses, and other computer logic. For
the data to be communicated over a serial channel, it
must be converted from parallel to a serial bit stream.
The USART is designed to function as a peripheral
device to the microprocessor. The actual conversion
from serial to parallel or parallel to serial is peformed
by the USART and is transparent to the microprocessor.
The standard USART chip is comprised of logic
circuits, which are connected by an internal data bus.

LINE DRIVERS/RECEIVERS— The line
drivers/receivers are designed to send and receive
signals over short or long distances using serial or
parallel format. Large voltages or currents are
generated from small voltage or current using TTL or
MOS circuitry. The two types most commonly used are
single-ended and differential.

I/O INTERFACE FORMATS— There is a variety
of serial and parallel I/O channel formats. Your
computer’s technical manual will provide the standards
to be used with the cabinet and cable connectors. They
will match the standards that govern the requirements
for parallel and serial interfacing.

7-37

I/O SERIAL DATA OPERATIONS— Serial data
operations exchange information via a single path, line,
or wire. The channel/port itself is made up of several
wires, but only one is used to transfer the binary data.

INTERCOMPUTER I/O OPERATIONS—
Parallel channels are often used to communicate
between two stand-alone computers. In this mode, the
computers will appear as external devices to each other.
One computer will be designated the transmitting

(outputting) computer; the other computer will be
designated the receiving (input) computer.

Learn all you can about how input/output
operations enable the computer to communicate with
and control the variety of equipments used in today’s
computer systems. Learn about the internal I/O process
and the interfacing process. This will help you to
troubleshoot and diagnose input/output problems and
to repair and/or replace I/O parts.

7-38

